Published in

Springer Nature [academic journals on nature.com], Pharmacogenomics Journal, 6(2), p. 377-382, 2002

DOI: 10.1038/sj.tpj.6500135

Links

Tools

Export citation

Search in Google Scholar

Yamada, M. et al. Differential expression of VAMPs/synaptobrevin-2 after antidepressant and electroconvulsive treatment in rat frontal cortex. Pharmacogenomics J. 2, 377-382

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The biological basis for the therapeutic mechanisms of depression is still unknown. We have previously performed expressed-sequence tag (EST) analysis to identify some molecular machinery responsible for antidepressant effect. Then, we developed our original cDNA microarray, on which cDNA fragments identified as antidepressant-related genes/ESTs were spotted. In this study, with this microarray followed by Western blot analysis, we have demonstrated the induction of vesicle-associated membrane protein 2(VAMP2/synaptobrevin-2) in rat frontal cortex not only after chronic antidepressant treatment, but also after repeated electroconvulsive treatment. On the other hand, expression of SNAP-25 and syntaxin-1 was not changed by these treatments. These components make a soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor complex with VAMP2 and mediate the synaptic vesicle docking/fusion machinery. In conclusion, it is suggested that VAMP2/synaptobrevin-2 plays important roles in the antidepressant effects. Our results may contribute to a novel model for the therapeutic mechanism of depression and new molecular targets for the development of therapeutic agents.