Published in

American Chemical Society, Journal of Proteome Research, 9(14), p. 3441-3451

DOI: 10.1021/acs.jproteome.5b00486

Links

Tools

Export citation

Search in Google Scholar

In Vitro Transcription/Translation System: A Versatile Tool in the Search for Missing Proteins

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Orange circle
Preprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Approximately 18% of all human genes purported to encode proteins have not been directly evidenced at the protein level, according to the validation criteria established by neXtProt, and are considered as "missing" proteins. One of the goals of the Chromosome-Centric Human Proteome Project (C-HPP) is to identify as many of these "missing" proteins as possible in human samples using mass spectrometry-based methods. To further this goal, a consortium of C-HPP teams (chromosomes 5, 10, 16 and 19) has joined forces to devise new strategies to identify "missing" proteins by use of a cell-free in vitro transcription/translation system (IVTT). The proposed strategy employs LC-MS/MS data-dependent acquisition (DDA) and targeted selective reaction monitoring (SRM) methods to scrutinize low complexity samples derived from IVTT translation. The optimized assays are then applied to identify "missing" proteins in human cells and tissues. We describe the approach and show proof-of-concept results for development of LC-SRM assays for identification of eighteen "missing" proteins. We believe that the IVTT system, when coupled with downstream mass spectrometric identification, can be applied to identify proteins that have eluded more traditional methods of detection.