Published in

Optica, Optics Express, 8(14), p. 3225, 2006

DOI: 10.1364/oe.14.003225

Links

Tools

Export citation

Search in Google Scholar

Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography

Journal article published in 2006 by R. Huber, M. Wojtkowski ORCID, J. G. Fujimoto
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We demonstrate a new technique for frequency-swept laser operation--Fourier domain mode locking (FDML)--and its application for swept-source optical coherence tomography (OCT) imaging. FDML is analogous to active laser mode locking for short pulse generation, except that the spectrum rather than the amplitude of the light field is modulated. High-speed, narrowband optical frequency sweeps are generated with a repetition period equal to the fundamental or a harmonic of cavity round-trip time. An FDML laser is constructed using a long fiber ring cavity, a semiconductor optical amplifier, and a tunable fiber Fabry-Perot filter. Effective sweep rates of up to 290 kHz are demonstrated with a 105 nm tuning range at 1300 nm center wavelength. The average output power is 3 mW directly from the laser and 20 mW after post-amplification. Using the FDML laser for swept-source OCT, sensitivities of 108 dB are achieved and dynamic linewidths are narrow enough to enable imaging over a 7 mm depth with only a 7.5 dB decrease in sensitivity. We demonstrate swept-source OCT imaging with acquisition rates of up to 232,000 axial scans per second. This corresponds to 906 frames/second with 256 transverse pixel images, and 3.5 volumes/second with a 256x128x256 voxel element 3-D OCT data set. The FDML laser is ideal for swept-source OCT imaging, thus enabling high imaging speeds and large imaging depths. (c) 2006 Optical Society of America.