Published in

American Chemical Society, Environmental Science and Technology, 5(28), p. 928-933, 1994

DOI: 10.1021/es00054a026

Links

Tools

Export citation

Search in Google Scholar

Virus Coagulation in Aqueous Environments

Journal article published in 1994 by Stanley B. Grant ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A mathematical model is presented for the temporal decline in total infectious units caused by simultaneous first-order inactivation and Brownian coagulation of viruses in an aqueous environment. On the basis of published physicochemical and biological constants for poliovirus, human immunodeficiency virus, and indigenous marine and freshwater bacteriophage, the model predicts that virion-virion coagulation is negligible in most aquatic systems. This analysis provides a framework for investigating the effect of coagulation and inactivation on viral infectivity and for developing more sophisticated models of virus survival outside the host cell.