Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Ageing Research Reviews, 1(9), p. 12-19, 2010

DOI: 10.1016/j.arr.2009.07.006

Links

Tools

Export citation

Search in Google Scholar

Bats and birds: Exceptional longevity despite high metabolic rates

Journal article published in 2010 by Jason Munshi-South ORCID, Gerald S. Wilkinson
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Bats and birds live substantially longer on average than non-flying mammals of similar body size. The combination of small body size, high metabolic rates, and long lifespan in bats and birds would not seem to support oxidative theories of ageing that view senescence as the gradual accumulation of damage from metabolic byproducts. However, large-scale comparative analyses and laboratory studies on a few emerging model species have identified multiple mechanisms for resisting oxidative damage to mitochondrial DNA and cellular structures in both bats and birds. Here we review these recent findings, and suggest areas in which additional progress on ageing mechanisms can be made using bats and birds as novel systems. New techniques for determining the age of free-living, wild individuals, and robustly supported molecular phylogenies, are under development and will improve the efforts of comparative biologists to identify ecological and evolutionary factors promoting long lifespan. In the laboratory, greater development of emerging laboratory models and comparative functional genomic approaches will be needed to identify the molecular pathways of longevity extension in birds and bats.