Published in

Nature Research, Nature Neuroscience, 9(7), p. 939-946, 2004

DOI: 10.1038/nn1300

Links

Tools

Export citation

Search in Google Scholar

PI3K promotes voltage-dependent calcium channel trafficking to the plasma membrane

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Phosphatidylinositol 3-kinase (PI3K) has been shown to enhance native voltage-dependent calcium channel (Ca(v)) currents both in myocytes and in neurons; however, the mechanism(s) responsible for this regulation were not known. Here we show that PI3K promotes the translocation of GFP-tagged Ca(v) channels to the plasma membrane in both COS-7 cells and neurons. We show that the effect of PI3K is mediated by Akt/PKB and specifically requires Ca(v)beta(2) subunits. The mutations S574A and S574E in Ca(v)beta(2a) prevented and mimicked, respectively, the effect of PI3K/Akt-PKB, indicating that phosphorylation of Ser574 on Ca(v)beta(2a) is necessary and sufficient to promote Ca(v) channel trafficking.