2011 IEEE Vehicular Technology Conference (VTC Fall)
DOI: 10.1109/vetecf.2011.6093086
Full text: Download
One of the important applications to be available in vehicular ad-hoc networks are value-added or infotainment services. However, vehicular communication suffers from high packet loss due to challenging channel characteristics such as huge Doppler spread and multipath fading. This makes current IEEE 802.11p standard for vehicular network based on the ARQ scheme inefficient. Therefore, the highly scalable and fault-tolerant properties offered by rateless code makes this a promising area of research. This paper investigates the implementation of a systematic Raptor codes for a broadcast service in infrastructure-to-vehicular communications. The code performance in terms of the decoding probability of success, mean decoding time and mean aggregate throughput are presented.