Published in

Wiley Open Access, Journal of Applied Clinical Medical Physics, 4(12), p. 15-23

DOI: 10.1120/jacmp.v12i4.3554

Links

Tools

Export citation

Search in Google Scholar

Increased beam attenuation and surface dose by different couch inserts of treatment tables used in megavoltage radiotherapy

Journal article published in 2011 by Jan K. H. Seppälä ORCID, Jarmo A. J. Kulmala
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The use of solid carbon fiber table materials in radiotherapy has become more common with the implementation of image-guided radiotherapy (IGRT), since the solid materials give less imaging artifacts than the so-called tennis racket couchtops. The downside of the solid carbon fiber couch inserts is that they increase the beam attenuation, resulting in increased surface doses and inaccuracies in determine the dose in the patient. The purpose of this study was to evaluate the interaction of 6 and 15 MV photons with eight different couch inserts. The presented results enable direct comparison of the attenuation properties of the studied couchtops. With a direct posterior beam the maximum attenuations reach 3.6% and 2.4% with 6 and 15 MV, respectively. The measured maximum attenuation by a couchtop with an oblique gantry angle was 10.8% and 7.4% at 6 and 15 MV energies, respectively. The skin-sparing effect was decreased substantially with every couchtop. The highest increases in surface doses were recorded to be four- and threefold, as compared to the direct posterior open field surface doses of 6 and 15 MV, respectively. In conclusion, the carbon fiber tabletops decrease the skin-sparing effect of megavoltage photon energies. The increased beam attenuation and skin doses should be taken into account in the process of treatment planning.