Published in

Springer Nature [academic journals on nature.com], Molecular Psychiatry, 12(9), p. 1075-1082, 2004

DOI: 10.1038/sj.mp.4001587

Links

Tools

Export citation

Search in Google Scholar

Association of a corticotropin-releasing hormone receptor 1 haplotype and antidepressant treatment response in Mexican-Americans

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

There are well-replicated, independent lines of evidence supporting a role for corticotropin-releasing hormone (CRH) in the pathophysiology of depression. CRH receptor 1 (CRHR1), which we first mapped in the brain in 1994, has been implicated in the treatment of depression and anxiety. We studied the association of CRHR1 genotypes with the phenotype of antidepressant treatment response in 80 depressed Mexican-Americans in Los Angeles who completed a prospective randomized, placebo lead-in, double-blind treatment of fluoxetine or desipramine, with active treatment for 8 weeks. Subjects were included into the study if they had a diagnosis of depression without other confounding medical or psychiatric diagnoses or treatments. All patients were followed weekly and assessed for changes in the Hamilton rating scales for anxiety (HAM-A) and depression (HAM-D). Inclusion criteria in the study included a HAM-D of 18 or higher. Because CRHR1 affects both depression and anxiety. Patients were classified into a high-anxiety (HA) group if their HAM-A score was 18 or higher and in a low-anxiety (LA) group if their HAM-A score was less than 18. Utilizing the haplotype-tag single-nucleotide polymorphisms rs1876828, rs242939 and rs242941, we tested for haplotypic association between CRHR1 and 8-week response to daily antidepressant treatment. In the HA group (n=54), homozygosity for the GAG haplotype was associated with a relative 70% greater reduction in HAM-A scores compared to heterozygous (63.1+/-4.5 vs 37.1+/-6.9%, respectively, P=0.002). For HAM-D, GAG haplotype homozygosity was associated with a 31% greater reduction in scores after treatment compared to heterozygous (67.3+/-4.3 vs 51.2+/-6.0%, respectively, P=0.03). In those with lower-anxiety levels at screening, there were no associations between CRHR1 genotype and percent change in HAM-A or HAM-D. These findings of increased response to antidepressants in highly anxious patients homozygous for the GAG haplotype of CRHR1 need to be independently validated and replicated. Such work would support the hypotheses that response to antidepressant treatment is heterogeneous and that the CRHR1 gene and possibly other genes in stress-inflammatory pathways are involved in response to antidepressant treatment. These findings also suggest that variations in the CRHR1 gene may affect response to CRHR1 agonists or antagonists. All data are deposited in www.pharmgkb.org.