Published in

Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD '13

DOI: 10.1145/2487575.2488196

Links

Tools

Export citation

Search in Google Scholar

An Integrated Framework for Suicide Risk Prediction

Proceedings article published in 2013 by Truyen Tran, Dinh Phung, Wei Luo ORCID, Richard Harvey, Michael Berk, Svetha Venkatesh
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Suicide is a major concern in society. Despite of great attention paid by the community with very substantive medico-legal implications, there has been no satisfying method that can reliably predict the future attempted or completed suicide. We present an integrated machine learning framework to tackle this challenge. Our proposed framework consists of a novel feature extraction scheme, an embedded feature selection process, a set of risk classifiers and finally, a risk calibration procedure. For temporal feature extraction, we cast the patient's clinical history into a temporal image to which a bank of one-side filters are applied. The responses are then partly transformed into mid-level features and then selected in l1-norm framework under the extreme value theory. A set of probabilistic ordinal risk classifiers are then applied to compute the risk probabilities and further re-rank the features. Finally, the predicted risks are calibrated. Together with our Australian partner, we perform comprehensive study on data collected for the mental health cohort, and the experiments validate that our proposed framework outperforms risk assessment instruments by medical practitioners.