Dissemin is shutting down on January 1st, 2025

Published in

American Institute of Physics, Review of Scientific Instruments, 7(81), p. 073902

DOI: 10.1063/1.3454918

Links

Tools

Export citation

Search in Google Scholar

Wide-range wavevector selectivity of magnon gases in Brillouin light scattering spectroscopy

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Brillouin light scattering spectroscopy is a powerful technique for the study of fast magnetization dynamics with both frequency and wavevector resolutions. Here, we report on a distinct improvement of this spectroscopic technique toward two-dimensional wide-range wavevector selectivity in a backward scattering geometry. Spin-wave wavevectors oriented perpendicularly to the bias magnetic field are investigated by tilting the sample within the magnet gap. Wavevectors which are oriented parallel to the applied magnetic field are analyzed by turning the entire setup, including the magnet system. The setup features a wide selectivity of wavevectors up to 2.04x10(5) rad/cm for both orientations, and allows selecting and measuring wavevectors of dipole- and exchange-dominated spin waves of any orientation to the magnetization simultaneously.