Published in

American Institute of Physics, The Journal of Chemical Physics, 9(134), p. 091101

DOI: 10.1063/1.3563016

Links

Tools

Export citation

Search in Google Scholar

Communication: Direct angle-resolved measurements of collision dynamics with electronically excited molecules: NO(A2Σ+) + Ar

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

We report direct doubly differential (quantum state and angle-resolved) scattering measurements involving short-lived electronically excited molecules using crossed molecular beams. In our experiment, supersonic beams of nitric oxide and argon atoms collide at 90°. In the crossing region, NO molecules are excited to the A(2)Σ(+)state by a pulsed nanosecond laser, undergo rotationally inelastic collisions with Ar atoms, and are then detected 400 ns later (approximately twice the radiative lifetime of the A(2)Σ(+)state) by 1 + 1(') multiphoton ionization via the E(2)Σ(+) state. The velocity distributions of the scattered molecules are recorded using velocity-mapped ion imaging. The resulting images provide a direct measurement of the state-to-state differential scattering cross sections. These results demonstrate that sufficient scattering events occur during the short lifetimes typical of molecular excited states (∼200 ns, in this case) to allow spectroscopically detected quantum-state-resolved measurements of products of excited-state collisions.