Published in

Elsevier, Journal of Nuclear Materials, 1-3(445), p. 104-110, 2014

DOI: 10.1016/j.jnucmat.2013.11.003

Links

Tools

Export citation

Search in Google Scholar

Stability of the strengthening nanoprecipitates in reduced activation ferritic steels under Fe2+ ion irradiation

Journal article published in 2014 by L. Tan ORCID, Y. Katoh, L. L. Snead
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The stability of MX-type precipitates is critical to retain mechanical properties of both reduced activation ferritic–martensitic (RAFM) and conventional FM steels at elevated temperatures. Radiation resistance of TaC, TaN, and VN nanoprecipitates irradiated up to ∼49 dpa at 500 °C using Fe2+ is investigated in this work. Transmission electron microscopy (TEM) utilized in standard and scanning mode (STEM) reveals the non-stoichiometric nature of the nanoprecipitates. Irradiation did not alter their crystalline nature. The radiation resistance of these precipitates, in an order of reduced resistance, is TaC, VN, and TaN. Particle dissolution, growth, and reprecipitation were the modes of irradiation-induced instability. Irradiation also facilitated formation of Fe2W type Laves phase limited to the VN and TaN bearing alloys. This result suggests that nitrogen level should be controlled to a minimal level in alloys to gain greater radiation resistance of the MX-type precipitates at similar temperatures as well as postpone the formation and subsequent coarsening of Laves phase.