Published in

American Chemical Society, Inorganic Chemistry, 7(54), p. 3477-3484, 2015

DOI: 10.1021/acs.inorgchem.5b00051

Links

Tools

Export citation

Search in Google Scholar

Insight into the Structure and Functional Application of the Sr0.95Ce0.05CoO3−δ Cathode for Solid Oxide Fuel Cells

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A new perovskite cathode, Sr0.95Ce0.05CoO3-δ, performs well for oxygen-reduction reactions in solid oxide fuel cells (SOFCs). We gain insight into the crystal structure of Sr1-xCexCoO3-δ (x = 0.05, 0.1) and temperature-dependent structural evolution of Sr0.95Ce0.05CoO3-δ by X-ray diffraction, neutron powder diffraction, and scanning transmission electron microscopy experiments. Sr0.9Ce0.1CoO3-δ shows a perfectly cubic structure (a = a0), with a large oxygen deficiency in a single oxygen site; however, Sr0.95Ce0.05CoO3-δ exhibits a tetragonal perovskite superstructure with a double c axis, defined in the P4/mmm space group, that contains two crystallographically different cobalt positions, with distinct oxygen environments. The structural evolution of Sr0.95Ce0.05CoO3-δ at high temperatures was further studied by in situ temperature-dependent NPD experiments. At 1100 K, the oxygen atoms in Sr0.95Ce0.05CoO3-δ show large and highly anisotropic displacement factors, suggesting a significant ionic mobility. The test cell with a La0.8Sr0.2Ga0.83Mg0.17O3-δ-electrolyte-supported (∼300 μm thickness) configuration yields peak power densities of 0.25 and 0.48 W cm(-2) at temperatures of 1023 and 1073 K, respectively, with pure H2 as the fuel and ambient air as the oxidant. The electrochemical impedance spectra evolution with time of the symmetric cathode fuel cell measured at 1073 K shows that the Sr0.95Ce0.05CoO3-δ cathode possesses superior ORR catalytic activity and long-term stability. Mixed ionic-electronic conduction properties of Sr0.95Ce0.05CoO3-δ account for its good performance as an oxygen-reduction catalyst.