Published in

Wiley, Biopharmaceutics and Drug Disposition, 9(27), p. 407-420, 2006

DOI: 10.1002/bdd.522

Links

Tools

Export citation

Search in Google Scholar

Pharmacogenomics of cancer chemopreventive isothiocyanate compound sulforaphane in the intestinal polyps of ApcMin/+ mice

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Sulforaphane (SFN) is an isothiocyanate that is present in widely consumed vegetables. Previous studies have shown that SFN is effective in preventing carcinogenesis induced by carcinogens in rodents. Recently it was found that SFN could also suppress the growth of intestinal polyps in the ApcMin/+ mouse. In the present study, the acute effect of SFN on the gene expression profile in small intestinal polyps of ApcMin/+ mice using Affymetrix microarray was performed. SFN is a strong inducer for phase II drug metabolizing enzymes, which is believed to contribute to its chemopreventive properties. However, the results show that genes involved in apoptosis, cell growth and maintenance rather than the predicted phase II genes were modulated. The proapoptotic genes including MBD4, TNFR-7 and TNF (ligand)-11 were up-regulated while pro-survival genes including cyclin-D2, integrin-beta1 and Wnt-9A were down-regulated. Interestingly, two genes potentially involved in colorectal carcinogenesis, 15-LOX and COX-2 were found to be increased and decreased, respectively. In conclusion, the results show, for the first time, that chemopreventive agents such as SFN regulate different set of genes involving apoptosis, cell growth/maintenance and inflammation in the small intestinal polyps of ApcMin/+ mice, which could contribute to the overall chemopreventive pharmacological effects.