Published in

The Company of Biologists, Journal of Experimental Biology, 23(214), p. 4065-4065, 2011

DOI: 10.1242/jeb.067454

The Company of Biologists, Journal of Experimental Biology, 22(214), p. 3727-3731, 2011

DOI: 10.1242/jeb.057323

Links

Tools

Export citation

Search in Google Scholar

Non-invasive study of Octopus vulgaris arm morphology using ultrasound

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

SUMMARY Octopus arms are extremely dexterous structures. The special arrangements of the muscle fibers and nerve cord allow a rich variety of complex and fine movements under neural control. Historically, the arm structure has been investigated using traditional comparative morphological ex vivo analysis. Here, we employed ultrasound imaging, for the first time, to explore in vivo the arms of the cephalopod mollusc Octopus vulgaris. Sonographic examination (linear transducer, 18 MHz) was carried out in anesthetized animals along the three anatomical planes: transverse, sagittal and horizontal. Images of the arm were comparable to the corresponding histological sections. We were able, in a non-invasive way, to measure the dimensions of the arm and its internal structures such as muscle bundles and neural components. In addition, we evaluated echo intensity signals as an expression of the difference in the muscular organization of the tissues examined (i.e. transverse versus longitudinal muscles), finding different reflectivity based on different arrangements of fibers and their intimate relationship with other tissues. In contrast to classical preparative procedures, ultrasound imaging can provide rapid, destruction-free access to morphological data from numerous specimens, thus extending the range of techniques available for comparative studies of invertebrate morphology.