Links

Tools

Export citation

Search in Google Scholar

Localized Enhancements of Energetic Proton Fluxes at Low Altitudes in the Subauroral Region and Their Relation to the Pc1 Pulsations

Journal article published in 2002 by T. A. Yahnina, A. G. Yahnin ORCID, J. Kangas, J. Manninen ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

A special kind of variation of energetic proton fluxes inside the anisotropic precipitation zone is considered using the data from the low-altitude satellites NOAA/TIROS. The variation is characterized by a localized (within 1 of latitude) enhancement of >30 keV protons, both trapped at the spacecraft altitude and precipitating. A close correlation is shown between the morphological characteristics of the proton precipitation and the Pc1 pulsations observed by the ground-based geophysical observatory Sodankyl. The probability of observation of the Pc1 pulsation by a ground-based station decreases with increasing MLT distance between this station and the projection of the satellite detecting the precipitating protons. The Pc1 pulsation frequency decreases as the proton burst latitude increases. These findings support the ion-cyclotron mechanism of the Pc1 production suggesting that both wave generation and particle scattering occur in the source region.