Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Sensors and Actuators B: Chemical, (209), p. 975-982, 2015

DOI: 10.1016/j.snb.2014.12.078

Links

Tools

Export citation

Search in Google Scholar

Ag-decorated ultra-thin porous single-crystalline ZnO nanosheets prepared by sunlight induced solvent reduction and their highly sensitive detection of ethanol

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Using a solvent reduction method, Ag nanoparticles were successfully decorated onto ultra-thin porous single-crystalline (UTPSC) ZnO nanosheets which were synthesized through a one-pot wet-chemical method followed by an annealing treatment. The as-prepared products were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectrum (EDS), X-ray diffraction (XRD), X-ray photoelectron spectrometry (XPS) and photoluminescence (PL) measurements. It can be found that the UTPSC ZnO nanosheets with a few micrometers in length and 8-10 nm in thickness were uniformly coated with Ag nanoparticles. The as-prepared products combined the advantages of porous structure, single-crystalline, ultra-thin thickness and Ag decoration, which definitely resulted in a dramatically sensing performance in ethanol detection. The lowest detection concentration was 1 ppb, which is the lowest detection limit to our knowledge. It is expected that the Ag-decorated UTPSC ZnO nanosheets may provide a new pathway to develop advanced nanomaterials for the application of trace gas detection.