Published in

Elsevier, Neuroscience, 2(147), p. 419-427

DOI: 10.1016/j.neuroscience.2007.04.036

Links

Tools

Export citation

Search in Google Scholar

Prenatal cocaine exposure enhances responsivity of locus coeruleus norepinephrine neurons: Role of autoreceptors

Journal article published in 2007 by J. D. Elsworth, B. A. Morrow, V.-T. Nguyen, J. Mitra, M. R. Picciotto ORCID, R. H. Roth
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Children exposed to cocaine during gestation have a higher incidence of neurobehavioral deficits. The neurochemical bases of these deficits have not been determined, but the pharmacology of cocaine and the nature of the abnormalities suggest that disruptions in catecholaminergic systems may be involved. In the current study, we used a rat model of prenatal cocaine exposure to examine the impact that this exposure has on the locus coeruleus (LC) noradrenergic system in offspring. Pregnant rats received twice-daily i.v. injections of cocaine (3 mg/kg) or saline between gestational days 10 and 20, and progeny were tested as juveniles. Exposure to a mild stressor elevated an index of norepinephrine turnover in the prefrontal cortex and also increased Fos expression in tyrosine hydroxylase-positive LC neurons in rats exposed to prenatal cocaine but not in rats exposed to prenatal saline. No change in the number of tyrosine hydroxylase-positive neurons in the LC was observed between the two prenatal treatment groups. Specific binding of [125I]-para-iodoclonidine, a radioligand with specificity for high affinity alpha2A-adrenergic receptors, was decreased in the LC of rats exposed to prenatal cocaine compared with prenatal saline controls. As alpha2-adrenergic receptors on LC norepinephrine neurons function as autoreceptors, their down-regulation by prenatal cocaine exposure provides a plausible mechanism for the observed heightened reactivity of norepinephrine neurons in these animals. These data indicate that prenatal cocaine exposure results in lasting changes to the regulation and responsivity of rat LC norepinephrine neurons. A similar dysregulation of LC norepinephrine neurons may occur in children exposed to cocaine during gestation, and this may explain, at least partly, the increased incidence of cognitive deficits that have been observed in these subjects.