Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Food and Bioproducts Processing, 3(90), p. 413-424, 2012

DOI: 10.1016/j.fbp.2011.12.002

Links

Tools

Export citation

Search in Google Scholar

Effect of process conditions on the microencapsulation of coffee oil by spray drying

Journal article published in 2012 by E. C. Frascareli, V. M. Silva, R. V. Tonon, M. D. Hubinger ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Microencapsulation is a good alternative to transform liquid food flavourings, such as coffee oil, into stable and free-flowing powders. Thus the aim of this study was to evaluate the influence of process conditions on the microencapsulation of coffee oil by spray drying, using gum Arabic as encapsulating agent. The effect of total solid content (10–30%), oil concentration with respect to total solids (10–30%) and inlet air temperature (150–190 °C) on the encapsulation efficiency, oil retention, moisture content and powder hygroscopicity were evaluated by a complete 23 central composite rotatable design. Both encapsulation efficiency and oil retention were negatively influenced by oil concentration and inlet air temperature, and positively affected by total solid content, which could be related to the emulsion viscosity and droplet size. Particles produced at the optimized process conditions (30% of total solids, 15% of oil with respect to total solids and inlet air temperature of 170 °C) were evaluated for oxidative stability and showed to be stable during storage at 25 °C, but not at 60 °C. At this temperature, pure oil presented higher lipid oxidation than encapsulated, confirming the protective effect of microencapsulation on the oxidative stability of this product.