Published in

Springer, European Journal of Applied Physiology, 4(109), p. 731-743, 2010

DOI: 10.1007/s00421-010-1413-y

Links

Tools

Export citation

Search in Google Scholar

SIRT1, AMP-activated protein kinase phosphorylation and downstream kinases in response to a single bout of sprint exercise: Influence of glucose ingestion

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This study was designed to examine potential in vivo mechanisms of AMP-activated protein kinase (AMPK) phosphorylation inhibition and its downstream signaling consequences during the recovery period after a single bout of sprint exercise. Sprint exercise induces Thr(172)-AMPK phosphorylation and increased PGC-1alpha mRNA, by an unknown mechanism. Muscle biopsies were obtained in 15 young healthy men in response to a 30-s sprint exercise (Wingate test) randomly distributed into two groups: the fasting (n = 7, C) and the glucose group (n = 8, G), who ingested 75 g of glucose 1 h before exercising to inhibit AMPKalpha phosphorylation. Exercise elicited different patterns of Ser(221)-ACCbeta, Ser(473)-Akt and Thr(642)-AS160 phosphorylation, during the recovery period after glucose ingestion. Thirty minutes after the control sprint, Ser(485)-AMPKalpha1/Ser(491)-AMPKalpha2 phosphorylation was reduced by 33% coinciding with increased Thr(172)-AMPKalpha phosphorylation (both, P < 0.05). Glucose abolished the 30-min Thr(172)-AMPKalpha phosphorylation. Ser(221)-ACCbeta phosphorylation was elevated immediately following and 30 min after exercise in C and G, implying a dissociation between Thr(172)-AMPKalpha and Ser(221)-ACCbeta phosphorylation. Two hours after the sprint, PGC-1alpha protein expression remained unchanged while SIRT1 (its upstream deacetylase) was increased. Glucose ingestion abolished the SIRT1 response without any significant effect on PGC-1alpha protein expression. In conclusion, glucose ingestion prior to a sprint exercise profoundly affects Thr(172)-AMPKalpha phosphorylation and its downstream signaling during the recovery period.