Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Journal of Statistical Planning and Inference, 11(137), p. 3361-3379

DOI: 10.1016/j.jspi.2007.03.017

Links

Tools

Export citation

Search in Google Scholar

From sources to biomarkers: A hierarchical Bayesian approach for human exposure modeling

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This paper investigates, from sources to biomarkers, the pathways of human exposure to arsenic. We use a multi-scale (individual level, county level) hierarchical Bayesian model (HBM) that has explicit stages for pollutant sources, global and local environmental levels, personal exposures, and biomarkers. By analyzing these stages simultaneously, we provide an analysis of exposure pathways from the sources of toxic substances in the environment to biomarker levels observed in individuals. The complexity of our approach, in terms of levels of hierarchy, variety of (misaligned) data sources, and computational requirements, illustrates what is possible using hierarchical Bayesian modeling. Our HBM draws on individual-specific measurements from the National Human Exposure Assessment Survey (NHEXAS) Phase I, supplemented by arsenic-concentration measurements in topsoil and stream sediments. We focus on arsenic and its air, soil, water, and food pathways of exposure for individuals in the US Environmental Protection Agency's Region 5 (Illinois, Indiana, Michigan, Minnesota, Ohio, and Wisconsin).