Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, NeuroImage, 1(21), p. 58-68

DOI: 10.1016/j.neuroimage.2003.09.033

Links

Tools

Export citation

Search in Google Scholar

Task demand modulations of visuospatial processing measured with functional magnetic resonance imaging

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Brain imaging based on functional magnetic resonance imaging (fMRI) provides a useful tool to examine neural networks and cerebral structures subserving visuospatial function. It allows not only the qualitative determination of which areas are active during task processing, but also estimates the quantitative contribution of involved brain regions to different aspects of spatial processing. In this study, we investigated in 10 healthy subjects how the amount of task (computational) demand in an angle discrimination task was related to neural activity as measured with event-related fMRI. Task demand, indicated by behavioral performance, was modulated by presenting clocks with different angular disparity and length of hands. Significant activations were found in the cortical network subserving the visual and visuospatial processing, including the right and left superior parietal lobules (SPL), striate visual areas, and sensorimotor areas. Both blood oxygenation level-dependent (BOLD) signal strength and spatial extent of activation in right as well as left SPL increased with task demand. By contrast, no significant correlation or a very weak correlation was found between the task demand and the BOLD signal as well as between task demand and spatial extent of activations in the striate visual areas and in the sensorimotor areas. These results support the hypothesis that increased computational demand requires more brain resources. The brain regions that are most specialized for the execution of the visuospatial task can be assessed by relating the imposed task demand to the functional activation measured.