Published in

IEEE/ICME International Conference on Complex Medical Engineering

DOI: 10.1109/iccme.2010.5558843

Links

Tools

Export citation

Search in Google Scholar

Potential effects of RFID systems on biotechnology insulin preparation: A study using HPLC and NMR spectroscopy

Proceedings article published in 2010 by R. Acierno, E. Carata, S. A. De Pascali, F. P. Fanizzi ORCID, M. Maffia, L. Mainetti, L. Patrono
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The item-level traceability is a very important requirement for many practical application scenarios, where it needs to guarantee perfect transparency for products flow along the whole supply chain. Among these, the pharmaceutical distribution is a very interesting scenario, characterized by many challenges, where, the Radio Frequency Identification (RFID) technology will play a very important role. Unfortunately, there are still some technical barriers that are retarding the deployment of these innovative technologies in large-scale. For the pharmaceutical supply chain, there have been concerns raised regarding the potential effects on the quality of drugs due to electromagnetic fields exposure. This work aimed to evaluate potential effects of tracing RFID systems on the molecular structure of biological drugs. In particular, some samples of a commercial human insulin preparation have been exposed for different periods to electromagnetic fields generated by RFID devices. In order to evaluate possible alterations on the molecular structure, the following diagnostic techniques were used: High Pressure Liquid Chromatography (HPLC) and Nuclear Magnetic Resonance (NMR). HPLC analysis demonstrated that there is are no differences between the RFID exposed samples and the control. On the contrary, a first and partial NMR analysis detected some changes on the insulin molecule spectra after one hour of exposition to the electromagnetic field. Unfortunately, this approach did not allow us to verify possible damages on the protein because of presence of expicients and low drug concentration. Further investigations, e.g. in vitro functional analysis, are required.