Published in

European Respiratory Society, European Respiratory Journal, 2(29), p. 284-291

DOI: 10.1183/09031936.00121006

Links

Tools

Export citation

Search in Google Scholar

Effects of rehabilitation on chest wall volume regulation during exercise in COPD patients

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In order to investigate underlying mechanisms, the present authors studied the effect of pulmonary rehabilitation on the regulation of total chest wall and compartmental (ribcage, abdominal) volumes during exercise in patients with chronic obstructive pulmonary disease. In total, 20 patients (forced expiratory volume in one second, mean +/- SEM 39 +/- 3% predicted) undertook high-intensity exercise 3 days x week(-1) for 12 weeks. Before and after rehabilitation, the changes in chest wall (cw) volumes at the end of expiration (EEV) and inspiration (EIV) were computed by optoelectronic plethysmography during incremental exercise to the limit of tolerance (W(peak)). Rehabilitation significantly improved W(peak) (57+/-7 versus 47+/-5 W). In the post-rehabilitation period and at identical work rates, significant reductions were observed in minute ventilation (35.1+/-2.7 versus 38.4+/-2.7 L x min(-1)), breathing frequency (26+/-1 versus 29+/-1 breaths x min(-1)) and EEV(cw) and EIV(cw) (by 182+/-79 and 136+/-37 mL, respectively). Inspiratory reserve volume was significantly increased (by 148+/-70 mL). Volume reductions were attributed to significant changes in abdominal EEV and EIV (by 163+/-59 and 125+/-27 mL, respectively). The improvement in W(peak) was similar in patients who progressively hyperinflated during exercise and those who did not (24 and 26%, respectively). In conclusion, pulmonary rehabilitation lowers chest wall volumes during exercise by decreasing the abdominal volumes. The improvement in exercise capacity following rehabilitation is independent of the pattern of exercise-induced dynamic hyperinflation.