Dissemin is shutting down on January 1st, 2025

Published in

2007 IEEE Symposium on Computational Intelligence and Data Mining

DOI: 10.1109/cidm.2007.368946

Links

Tools

Export citation

Search in Google Scholar

Data Mining of MISR Aerosol Product using Spatial Statistics

Proceedings article published in 2007 by Tao Shi, Noel Cressie ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In climate models, aerosol forcing is the major source of uncertainty in climate forcing, over the industrial period. To reduce this uncertainty, instruments on satellites have been put in place to collect global data. However, missing and noisy observations impose considerable difficulties for scientists researching global aerosol distribution, aerosol transportation, and comparisons between satellite observations and global-climate-model outputs. In this paper, we propose a Spatial Mixed Effects (SME) statistical model to predict the missing values, denoise the observed values, and quantify the spatial-prediction uncertainties. The computations associated with the SME model are linear scalable to the number of data points, which makes it feasible to process massive global satellite data. We apply our proposed methodology, which we call Fixed Rank Kriging (FRK), to the level-3 Aerosol Optical Depth dataset collected by NASA's Multi-angle Imaging SpectroRadiometor (MISR) instrument flying on the Terra satellite. Overall, our results were superior to those from nonstatistical methods and, importantly, FRK has an uncertainty measure associated with it