Full text: Download
The origin of the plasticity in bulk nanocrystalline metals have, to date, been attributed to the grain-boundary-mediated process, stress-induced grain coalescence, dislocation plasticity, and/or twinning. Here we report a different mechanism - detwinning, which operates at low temperatures during the tensile deformation of an electrodeposited Cu with a high density of nanosized growth twins. Both three-dimensional XRD microscopy using the Laue method with a submicron-sized polychromatic beam and high-energy XRD technique with a monochromatic beam provide the direct experimental evidences for low temperature detwinning of nanoscale twins.