Published in

BioScientifica, Reproduction, 1(134), p. 155-160, 2007

DOI: 10.1530/rep-07-0130

Links

Tools

Export citation

Search in Google Scholar

Intracerebroventricular administration of the prolactin (PRL) receptor antagonist, S179D PRL, disrupts parturition in rats

Journal article published in 2007 by B. C. Nephew ORCID, J. Amico, H. M. Cai, A. M. Walker, R. S. Bridges
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The prolactin (PRL) receptor antagonist S179D PRL delays the onset of maternal behavior in steroid-primed nulliparous female rats. The present study investigated the role of the neural PRL system in the process of parturition. A preliminary study indicated that S179D PRL treatments administered by ALZET minipump to the lateral ventricle severely disrupted parturition. To examine the likely causes of this disruption, a group of timed-pregnant catheterized rats was continuously infused with S-179D PRL (0.001 and 0.1 ng/h) or vehicle control to the lateral ventricles for 3 days (gestation days 21–23), and serial blood samples were taken throughout this period. Effects of the treatments on parturition were recorded, and blood samples were assayed for PRL, progesterone, and oxytocin. Significantly fewer S179D PRL-treated rats successfully delivered by 1500 h on day 23 of gestation when compared with controls. The higher dose of S179D PRL also significantly suppressed the prepartum rise in PRL throughout the prepartum period, while the lower dose only affected plasma PRL during the first 24 h of treatment. No significant effects of the antagonist on plasma progesterone or oxytocin were detected. We conclude that disruption of parturition by S179D PRL is not caused by significant alterations in the plasma concentrations of progesterone or oxytocin. S179D PRL may indirectly act on parturition through the modulation of prepartum PRL. These findings suggest a previously unrecognized role for PRL in the regulation of parturition.