Dissemin is shutting down on January 1st, 2025

Published in

American Association of Immunologists, The Journal of Immunology, 8(188), p. 4103-4112, 2012

DOI: 10.4049/jimmunol.1101295

Links

Tools

Export citation

Search in Google Scholar

Truncated and Full-Length Thioredoxin-1 Have Opposing Activating and Inhibitory Properties for Human Complement with Relevance to Endothelial Surfaces

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Thioredoxin (Trx)-1 is a small, ubiquitously expressed redox-active protein with known important cytosolic functions. However, Trx1 is also upregulated in response to various stress stimuli, is found both at the cell surface and secreted into plasma, and has known anti-inflammatory and antiapoptotic properties. Previous animal studies have demonstrated that exogenous Trx1 delivery can have therapeutic effects in a number of disease models and have implicated an interaction of Trx1 with the complement system. We found that Trx1 is expressed in a redox-active form at the surface of HUVEC and acts as an inhibitor of complement deposition in a manner dependent on its Cys-Gly-Pro-Cys active site. Inhibition occurred at the point of the C5 convertase of complement, regulating production of C5a and the membrane attack complex. A truncated form of Trx1 also exists in vivo, Trx80, which has separate nonoverlapping functions compared with the full-length Trx1. We found that Trx80 activates the classical and alternative pathways of complement activation, leading to C5a production, but the inflammatory potential of this was also limited by the binding of inhibitors C4b-binding protein and factor H. This study adds a further role to the known anti-inflammatory properties of Trx1 and highlights the difference in function between the full-length and truncated forms.