Published in

Nature Research, Nature Genetics, 11(47), p. 1334-1340, 2015

DOI: 10.1038/ng.3420

Links

Tools

Export citation

Search in Google Scholar

Juvenile myelomonocytic leukemia displays mutations in components of the RAS pathway and the PRC2 network

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Juvenile myelomonocytic leukemia (JMML) is a rare and severe myelodysplastic and myeloproliferative neoplasm of early childhood initiated by germline or somatic RAS-activating mutations. Genetic profiling and whole-exome sequencing of a large JMML cohort (118 and 30 cases, respectively) uncovered additional genetic abnormalities in 56 cases (47%). Somatic events were rare (0.38 events/Mb/case) and restricted to sporadic (49/78; 63%) or neurofibromatosis type 1 (NF1)-associated (8/8; 100%) JMML cases. Multiple concomitant genetic hits targeting the RAS pathway were identified in 13 of 78 cases (17%), disproving the concept of mutually exclusive RAS pathway mutations and defining new pathways activated in JMML involving phosphoinositide 3-kinase (PI3K) and the mTORC2 complex through RAC2 mutation. Furthermore, this study highlights PRC2 loss (26/78; 33% of sporadic JMML cases) that switches the methylation/acetylation status of lysine 27 of histone H3 in JMML cases with altered RAS and PRC2 pathways. Finally, the association between JMML outcome and mutational profile suggests a dose-dependent effect for RAS pathway activation, distinguishing very aggressive JMML rapidly progressing to acute myeloid leukemia.