Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Neuropharmacology, (75), p. 337-346

DOI: 10.1016/j.neuropharm.2013.07.037

Links

Tools

Export citation

Search in Google Scholar

CCL5-glutamate interaction in central nervous system: Early and acute presynaptic defects in EAE mice

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We investigated the CCL5-glutamate interaction in the cortex and in the spinal cord from mice with Experimental Autoimmune Encephalomyelitis (EAE) at 13 and 21/30 days post immunization (d.p.i.), representing the onset and the peak of the disease, respectively. An early reduction of the KCl-evoked glutamate release was observed in cortical terminals from EAE mice at 13 d.p.i., persisting until 21/30 d.p.i.. A concomitant reduction of the depolarization-evoked cyclic adenosine monophosphate (cAMP), but not of the inositol 1,4,5-trisphosphate (IP3) cortical production also occurred at 13 d.p.i, that still was detectable at the acute stage of disease (21 dp.i.). Inasmuch, the CCL5-mediated inhibition of glutamate exocytosis observed in control mice turned to facilitation in EAE mouse cortex at 13 d.p.i., then becoming undetectable at 21/30 d.p.i.. Differently, glutamate exocytosis, as well as IP3 and cAMP productions were unaltered in spinal cord synaptosomes from EAE mice at 13 d.p.i., but significantly increased at 21/30 d.p.i., while the presynaptic CCL5-mediated facilitation of glutamate exocytosis observed in control mice remained unchanged. In both CNS regions, the presynaptic defects were paralleled by increased CCL5 availability. Inasmuch, the presynaptic defects so far described in EAE mice were reminesent of the effects acute CCL5 exerts in control conditions. Based on these observations we propose that increased CCL5 bioavailability could have a role in determining the abovedescribed impaired presynaptic impairments in both CNS regions. These presynaptic defects could be relevant to the onset of early cognitive impairments and acute neuroinflammation and demyelinating processes observed in multiple sclerosis patients.