Published in

BioScientifica, Reproduction, 3(139), p. 599-611, 2010

DOI: 10.1530/rep-09-0305

Links

Tools

Export citation

Search in Google Scholar

Ontogeny of the oestrogen receptors ESR1 and ESR2 during gonadal development in the tammar wallaby, Macropus eugenii

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Oestrogen has wide ranging effects in development mediated mainly via the two oestrogen receptors, alpha (ESR1, also known as ERalpha) and beta (ESR2, also known as ERbeta). Oestrogen is the key factor that directs the indifferent gonad to become an ovary in many non-mammalian vertebrates. Oestrogen is not required for early ovarian differentiation in mammals but can disrupt normal testicular development in eutherians. Surprisingly, exogenous oestrogen can cause sex reversal of an XY gonad in two marsupials, the North American opossum and the tammar wallaby. To understand the mechanism by which oestrogen induces sex reversal, we characterised the genes for ESR1 and ESR2 and examined their expression during gonadal differentiation in the tammar wallaby, Macropus eugenii. Both receptors were expressed in the somatic cells and germ cells of the indifferent gonad in both XX and XY foetuses throughout all stages of development, and persisted in these cells into adulthood. ERs were also present in many other tissues including kidney, pituitary and mammary gland. ER mRNA was not significantly altered by exogenous oestrogen in cultured XY gonads but the receptors translocated to the nucleus in its presence. These findings confirm that there is conserved expression of the ERs in the indifferent gonad despite the lack of available ligand during early gonadal development. The receptors can respond to exogenous estrogen at this early stage and are capable of transducing signals in the early mammalian gonad. However, the selective forces that maintained conserved ER expression in this tissue remain unknown.