Links

Tools

Export citation

Search in Google Scholar

A Priori Convergence Theory for Reduced-Basis Approximations of Single-Parameter Elliptic Partial Differential Equations

Journal article published in 2002 by Yvon Maday, Anthony T. Patera, Gabriel Turinici ORCID
This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

We consider Lagrangian reduced-basis methods for single-parameter symmetric coercive elliptic partial differential equations. We show that, for a logarithmic-(quasi-)uniform distribution of sample points, the reduced–basis approximation converges exponentially to the exact solution uniformly in parameter space. Furthermore, the convergence rate depends only weakly on the continuity-coercivity ratio of the operator: thus very low-dimensional approximations yield accurate solutions even for very wide parametric ranges. Numerical tests (reported elsewhere) corroborate the theoretical predictions.