Published in

Springer (part of Springer Nature), Environmental Science and Pollution Research, 2(23), p. 1158-1172

DOI: 10.1007/s11356-015-5648-3

Links

Tools

Export citation

Search in Google Scholar

Characteristics of ammonia, acid gases, and PM2.5 for three typical land-use types in the North China Plain

Journal article published in 2015 by Wen Xu, Qinghua Wu, Xuejun Liu, Aohan Tang, Anthony J. Dore, Mathew R. Heal ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Air pollution is one of the most serious environmental problems in China due to its rapid economic development alongside a very large consumption of fossil fuel, particularly in the North China Plain (NCP). During the period 2011-2014, we integrated active and passive sampling methods to perform continuous measurements of NH3, HNO3, NO2, and PM2.5 at two urban, one suburban, and two rural sites in the NCP. The annual average concentrations of NH3, NO2, and HNO3 across the five sites were in the ranges 8.5-23.0, 22.2-50.5, and 5.5-9.7 μg m(-3), respectively, showing no significant spatial differences for NH3 and HNO3 but significantly higher NO2 concentration at the urban sites. At each site, annual average concentrations of NH3 and NO2 showed increasing and decreasing trends, respectively, while there was no obvious trend in annual HNO3 concentrations. Daily PM2.5 concentrations ranged from 11.8 to 621.0 μg m(-3) at the urban site, from 19.8 to 692.9 μg m(-3) at the suburban site, and from 23.9 to 754.5 μg m(-3) at the two rural sites, with more than 70 % of sampling days exceeding 75 μg m(-3). Concentrations of water-soluble ions in PM2.5 ranked differently between the non-rural and rural sites. The three dominant ions were NH4 (+), NO3 (-), and SO4 (2-) and mainly existed as (NH4)2SO4, NH4HSO4, and NH4NO3, and their concentrations averaged 48.6 ± 44.9, 41.2 ± 40.8, and 49.6 ± 35.9 μg m(-3) at the urban, suburban, and rural sites, respectively. Ion balance calculations indicated that PM2.5 was neutral at the non-rural sites but acidic at the rural sites. Seasonal variations of the gases and aerosols exhibited different patterns, depending on source emission strength and meteorological conditions. Our results suggest that a feasible pathway to control PM2.5 pollution in the NCP should target ammonia and acid gases together.