Published in

IOP Publishing, Physics in Medicine & Biology, 17(50), p. 3957-3969, 2005

DOI: 10.1088/0031-9155/50/17/003

Links

Tools

Export citation

Search in Google Scholar

High-resolution imager for digital mammography: Physical characterization of a prototype sensor

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The physical performance characteristics of a high-resolution sensor module for digital mammography were investigated. The signal response of the imager was measured at various detector entrance air kerma and was found to be linear. The spatial resolution was determined by measuring the presampling modulation transfer function, MTF(f), of the system. The noise power spectra, NPS(f), of the system were estimated using 26 kVp: Mo/Mo, 28 kVp: Mo/Rh and 30 kVp: Rh/Rh, with polymethyl methacrylate (PMMA) 'tissue equivalent material' of thickness 20, 45 and 57 mm for each of three x-ray spectra at detector entrance air kerma in the range between approximately 80.2 and 92.3 microGy. The noise equivalent quanta, NEQ(f), and detective quantum efficiencies, DQE(f), for the various spectral conditions were computed. In addition, dose dependence of NPS(f) and DQE(f) was studied at various detector entrance air kerma ranging from 9.4 to 169.7 microGy. A spatial resolution of about 10 cycles mm(-1) was obtained at the 10% MTF(f) level. A small increase in NEQ(f)was observed under higher energy spectral conditions while the DQE(f) decreased marginally. For a given spectrum, increasing PMMA filtration produced negligible change in DQE(f). The estimated DQE values at zero frequency were in the range between 0.45 and 0.55 under the conditions investigated in this study.