Published in

Elsevier, Continental Shelf Research, (37), p. 66-78

DOI: 10.1016/j.csr.2012.02.010

Links

Tools

Export citation

Search in Google Scholar

Modeling transport and deposition of the Mekong River sediment

Journal article published in 2012 by Zuo Xue, Ruoying He, J. Paul Liu, John C. Warner
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A Coupled Wave–Ocean–Sediment Transport Model was used to hindcast coastal circulation and fine sediment transport on the Mekong shelf in southeastern Asian in 2005. Comparisons with limited observations showed that the model simulation captured the regional patterns and temporal variability of surface wave, sea level, and suspended sediment concentration reasonably well. Significant seasonality in sediment transport was revealed. In summer, a large amount of fluvial sediments was delivered and deposited near the Mekong River mouth. In the following winter, strong ocean mixing, and coastal current lead to resuspension and southwestward dispersal of a small fraction of previously deposited sediments. Model sensitivity experiments (with reduced physics) were performed to investigate the impact of tides, waves, and remotely forced ambient currents on the transport and dispersal of the fluvial sediment. Strong wave mixing and downwelling-favorable coastal current associated with the more energetic northeast monsoon in the winter season are the main factors controlling the southwestward along-shelf transport.