Published in

American Chemical Society, Energy and Fuels, 4(19), p. 1536-1541, 2005

DOI: 10.1021/ef049693l

Links

Tools

Export citation

Search in Google Scholar

Numerical Simulation of Ash Vaporization during Pulverized Coal Combustion in the Laboratory-Scale Single-Burner Furnace

Journal article published in 2005 by Jiancai Sui, Minghou Xu, Jihua Qiu, Yu Qiao, Yun Yu, Xiaowei Liu, Xiangpeng Gao ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

CFD tools have been developed to effectively simulate complex, reacting, multiphase flows that exist in utility boilers. In this paper, a model of ash vaporization was established and integrated into a self-developed CFD code to predict ash vaporization in the coal combustion process. Experimental data from a single-particle combustion was used to validate the above model. The calibrated model was then applied to simulate the ash vaporization in a 92.9 kW laboratory-scale single-burner furnace. The effects of different combustion conditions, including air staging, on the ash vaporization were investigated. The results showed that the fraction of ash vaporization is mostly sensitive to coal particle temperature. Ash vaporization primarily occurred after a short interval along the coal particle trajectories when the particle temperatures increased to 1800 K. Air staging influenced the ash vaporization by changing the gas temperature distribution in the furnace. The simulation results showed that the more extreme the staging condition, the lower the overall peak temperature, and hence the lower the amount of ash vaporization.