Dissemin is shutting down on January 1st, 2025

Published in

IOP Publishing, Physical Biology, 2(12), p. 025002, 2015

DOI: 10.1088/1478-3975/12/2/025002

Links

Tools

Export citation

Search in Google Scholar

Relationship between protein thermodynamic constraints and variation of evolutionary rates among sites

Journal article published in 2015 by Julian Echave ORCID, Eleisha L. Jackson, Claus O. Wilke
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Evolutionary-rate variation among sites within proteins depends on functional and biophysical properties that constrain protein evolution. It is generally accepted that proteins must be able to fold stably in order to function. However, the relationship between stability constraints and among-sites rate variation is not well understood. Here, we present a biophysical model that links the thermodynamic stability changes due to mutations at sites in proteins (ΔΔG) to the rate at which mutations accumulate at those sites over evolutionary time. We find that such a 'stability model' generally performs well, displaying correlations between predicted and empirically observed rates of up to 0.75 for some proteins. We further find that our model has comparable predictive power as does an alternative, recently proposed 'stress model' that explains evolutionary-rate variation among sites in terms of the excess energy needed for mutants to adopt the correct active structure (ΔΔG*). The two models make distinct predictions, though, and for some proteins the stability model outperforms the stress model and vice versa. We conclude that both stability and stress constrain site-specific sequence evolution in proteins.