Published in

European Geosciences Union, Atmospheric Measurement Techniques, 5(4), p. 955-964, 2011

DOI: 10.5194/amt-4-955-2011

European Geosciences Union, Atmospheric Measurement Techniques Discussions, 1(4), p. 913-937

DOI: 10.5194/amtd-4-913-2011

Links

Tools

Export citation

Search in Google Scholar

A five year record of high-frequency in situ measurements of non-methane hydrocarbons at Mace Head, Ireland

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Continuous high-frequency in situ measurements of a range of non-methane hydrocarbons have been made at Mace Head since January 2005. Mace Head is a background Northern Hemispheric site situated on the eastern edge of the Atlantic. Five year measurements (2005–2009) of eleven non-methane hydrocarbons, namely C2–C5 alkanes, benzene, toluene, ethyl-benzene and the xylenes, have been separated into baseline Northern Hemispheric and European polluted air masses, among other sectors. Seasonal cycles in baseline Northern Hemispheric air masses and European polluted air masses arriving at Mace Head have been studied. Baseline air masses show a broad summer minima between June and September for shorter lived species, longer lived species show summer minima in July/August. All species displayed a winter maxima in February. European air masses showed baseline elevated mole fractions for all non-methane hydrocarbons, largest elevations (of up to 360 ppt for ethane maxima) from baseline data were observed in winter maxima, with smaller elevations observed during the summer. Analysis of temporal trends using the Mann-Kendall test showed small (<6%/year) but statistically significant decreases in the butanes, i-pentane and o-xylene between 2005 and 2009 in European air. Toluene was found to have an increasing trend of 34%/year in European air. No significant trends were found for any species in baseline air.