Published in

Taylor and Francis Group, Hydrological Sciences Journal, 3(48), p. 317-337

DOI: 10.1623/hysj.48.3.317.45290

Links

Tools

Export citation

Search in Google Scholar

Development and testing of the WaterGAP 2 global model of water use and availability

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Growing interest in global environmental issues has led to the need for global and regional assessment of water resources. A global water assessment model called "WaterGAP 2" is described, which consists of two main components-a Global Water Use model and a Global Hydrology model. These components are used to compute water use and availability on the river basin level. The Global Water Use model consists of (a) domestic and industry sectors which take into account the effect of structural and technological changes on water use, and (b) an agriculture sector which accounts especially for the effect of climate on irrigation water requirements. The Global Hydrology model calculates surface runoff and groundwater recharge based on the computation of daily water balances of the soil and canopy. A water balance is also performed for surface waters, and river flow is routed via a global flow routing scheme. The Global Hydrology model provides a testable method for taking into account the effects of climate and land cover on runoff. The components of the model have been calibrated and tested against data on water use and runoff from river basins throughout the world. Although its performance can and needs to be improved, the WaterGAP 2 model already provides a consistent method to fill in many of the existing gaps in water resources data in many parts of the world. It also provides a coherent approach for generating scenarios of changes in water resources. Hence, it is especially useful as a tool for globally comparing the water situation in river basins.