Published in

Hans Publishers, Astronomy & Astrophysics, 2(507), p. 901-910

DOI: 10.1051/0004-6361/200912551

Links

Tools

Export citation

Search in Google Scholar

HD 172189: another step in furnishing one of the best laboratories known for asteroseismic studies

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

HD 172189 is a spectroscopic eclipsing binary system with a rapidly-rotating pulsating δ Scuti component. It is also a member of the open cluster IC 4756. These combined characteristics make it an excellent laboratory for asteroseismic studies. To date, HD 172189 has been analysed in detail photometrically but not spectroscopically. For this reason we have compiled a set of spectroscopic data to determine the absolute and atmospheric parameters of the components. We determined the radial velocities (RV) of both components using four different techniques. We disentangled the binary spectra using KOREL, and performed the first abundance analysis on both disentangled spectra. By combining the spectroscopic results and the photometric data, we obtained the component masses, 1.8 and 1.7 Mȯ, and radii, 4.0 and 2.4 Rȯ, for inclination i = 73.2°, eccentricity e = 0.28, and orbital period Π = 5.70198 days. Effective temperatures of 7600 K and 8100 K were also determined. The measured v sin i are 78 and 74 km s-1, respectively, giving rotational periods of 2.50 and 1.55 days for the components. The abundance analysis shows [Fe/H] = -0.28 for the primary (pulsating) star, consistent with observations of IC 4756. We also present an assessment of the different analysis techniques used to obtain the RVs and the global parameters.