Published in

Collegium Basilea, Journal of Biological Physics and Chemistry, 4(9), p. 11-16, 2009

DOI: 10.4024/10gu09a.jbpc.09.01

Links

Tools

Export citation

Search in Google Scholar

A 3D mechanical model of the early mammalian embryo

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The early development of the mammalian embryo leads to the formation of a structure composed by an outer layer of polarized cells surrounding an inner mass of nonpolarized cells. Experimental biology has shown that this organization results from changes in cell polarity, cell shape and intercellular contacts at the 8 and 16-cell stages. In order to examine how the physical properties of embryo cells (adhesion, cortical tension) influence the organization of the cells within the embryo, our team has developed a 3D mechanical model of the dividing early embryo, based on cellular Potts models. In this paper we will present the principles of our simulations, the methodology used and we will show that a very simple mechanical model can reproduce the main structural features (geometry, cell arrangement) of the mammalian embryo during its early developmental stages, up to the 16-cell stage.