Dissemin is shutting down on January 1st, 2025

Published in

American Meteorological Society, Journal of Physical Oceanography, 9(45), p. 2261-2275, 2015

DOI: 10.1175/jpo-d-15-0017.1

Links

Tools

Export citation

Search in Google Scholar

Observation of Extreme Sea Waves in a Space-Time Ensemble

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

AbstractIn this paper, an observational space–time ensemble of sea surface elevations is investigated in search of the highest waves of the sea state. Wave data were gathered by means of a stereo camera system, which was installed on top of a fixed oceanographic platform located in the Adriatic Sea (Italy). Waves were measured during a mature sea state with an average wind speed of 11 m s−1. By examining the space–time ensemble, the 3D wave groups have been isolated while evolving in the 2D space and grabbed “when and where” they have been close to the apex of their development, thus exhibiting large surface displacements. The authors have selected the groups displaying maximal crest height exceeding the threshold adopted to define rogue waves in a time record, that is, 1.25 times the significant wave height (Hs). The records at the spatial positions where such large crests occurred have been analyzed to derive the empirical distributions of crest and wave heights, which have been compared against standard statistical linear and nonlinear models. Here, the maximal observed wave crests have resulted to be outliers of the standard statistics, behaving as isolated members of the sample, apparently uncorrelated with other waves of the record. However, this study has found that these unexpectedly large wave crests are better approximated by a space–time model for extreme crest heights. The space–time model performance has been improved, deriving a second-order approximation of the linear model, which has provided a fair agreement with the empirical maxima. The present investigation suggests that very large waves may be more numerous than generally expected.