Published in

Nature Research, Nature Materials, 12(6), p. 966-971, 2007

DOI: 10.1038/nmat2055

Links

Tools

Export citation

Search in Google Scholar

Bicontinuous emulsions stabilized solely by colloidal particles

Journal article published in 2007 by E. M. Herzig ORCID, K. A. White, A. B. Schofield ORCID, W. C. K. Poon ORCID, P. S. Clegg
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Recent large-scale computer simulations suggest that it may be possible to create a new class of soft solids, called 'bijels', by stabilizing and arresting the bicontinuous interface in a binary liquid demixing via spinodal decomposition using particles that are neutrally wetted by both liquids. The interfacial layer of particles is expected to be semi-permeable; hence, if realized, these new materials would have many potential applications, for example, as micro-reaction media. However, the creation of bijels in the laboratory faces serious obstacles. In general, fast quench rates are necessary to bypass nucleation, so that only samples with limited thickness can be produced, which destroys the three-dimensionality of the putative bicontinuous network. Moreover, even a small degree of unequal wettability of the particles by the two liquids can lead to ill-characterized, 'lumpy' interfacial layers and therefore irreproducible material properties. Here, we report a reproducible protocol for creating three-dimensional samples of bijel in which the interfaces are stabilized by essentially a single layer of particles. We demonstrate how to tune the mean interfacial separation in these bijels, and show that mechanically, they indeed behave as soft solids. These characteristics and their tunability will be of great value for microfluidic applications.