Published in

MDPI, Minerals, 4(4), p. 758-787, 2014

DOI: 10.3390/min4040758

Links

Tools

Export citation

Search in Google Scholar

Particle Size-Specific Magnetic Measurements as a Tool for Enhancing Our Understanding of the Bulk Magnetic Properties of Sediments

Journal article published in 2014 by Robert George Hatfield ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Bulk magnetic properties of soils and sediments are often sensitive proxies for environmental change but commonly require interpretation in terms of the different sources of magnetic minerals (or components) that combine to generate them. Discrimination of different components in the bulk magnetic record is often attempted through endmember unmixing and/or high resolution measurements that can require intensive measurement plans, assume linear additivity, and sometimes have difficulty in discriminating a large number of sources. As an alternative, magnetic measurements can be made on isolated sediment fractions that constitute the bulk sample. When these types of measurements are taken, heterogeneity is frequently observed between the magnetic properties of different fractions, suggesting different magnetic components often associate with different physical grain sizes. Using a particle size-specific methodology, individual components can be isolated and studied and bulk magnetic properties can be linked to, and isolated from, sedimentological variations. Deconvolving sedimentary and magnetic variability in this way has strong potential for increased understanding of how magnetic fragments are carried in natural systems, how they vary with different source(s), and allows for a better assessment of the effect environmental variability has in driving bulk magnetic properties. However, despite these benefits, very few studies exploit the information they can provide. Here, I present an overview of the different sources of magnetic minerals, why they might associate with different sediment fractions, how bulk magnetic measurements have been used to understand the contribution of different components to the bulk magnetic record, and outline how particle size-specific magnetic measurements can assist in their better understanding. Advantages and disadvantages of this methodology, their role alongside bulk magnetic measurements, and potential future directions of research are also discussed.