Published in

American Chemical Society, Inorganic Chemistry, 7(53), p. 3778-3787, 2014

DOI: 10.1021/ic500113g

Links

Tools

Export citation

Search in Google Scholar

Low-Coordinate Bismuth Cations

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Chloride abstraction from the diamido-bismuth compound Bi(Me2Si{NAr}2)Cl (1, Ar = 2,6-i-Pr2C6H3) using MCl3 (M = Al, Ga) is a facile route to cationic species. Stoichiometric reactions afford the tetrachlorometallate salts [Bi(Me2Si{NAr}2)][MCl4] (2a, M = Al; 3a, M = Ga), whereas reaction with 0.5 equiv of the group 13 reagent gives the μ-chlorido bridged cations [{Bi(Me2Si{NAr}2)}2(μ-Cl)][MCl4] (2b, M = Al; 3b, M = Ga). The crystal structure of 2a shows a formally two-coordinate bismuth cation, with a Bi···Cl contact to the [AlCl4](-) anion, whereas the structure of 3b shows a total of three Bi···Cl contacts to [GaCl4](-). Both species associate as {1:1}2 dimers in the solid state through additional Bi···Cl interactions. Attempted preparation of cationic complexes using either NaBR4 (R = Ph, Et) or [HNEt3][BPh4] were unsuccessful. Instead of forming the borate salts, the neutral compounds Bi(Me2Si{NAr}2)R (4, R = Et; 5, R = Ph) were isolated as a result of aryl/alkyl transfer from boron to bismuth.