Published in

The Company of Biologists, Journal of Experimental Biology, 2014

DOI: 10.1242/jeb.092635

Links

Tools

Export citation

Search in Google Scholar

Defective skeletogenesis and oversized otoliths in fish early stages in a changing ocean

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Abstract Early life stages of many marine organisms are being challenged by rising seawater temperature and CO2 concentrations, but their physiological responses to these environmental changes still remain unclear. In the present study, we show that future predictions of ocean warming (+4°C) and acidification (ΔpH = 0.5 units) may compromise the development of early life stages of a highly commercial teleost fish, Solea senegalensis. Exposure to future conditions caused a decline in hatching success and larval survival. Growth, metabolic rates and thermal tolerance increased with temperature but decreased under acidified conditions. Hypercapnia and warming amplified the incidence of deformities by 31.5% (including severe deformities such as lordosis, scoliosis and kyphosis), while promoting the occurrence of oversized otoliths (109.3% increase). Smaller larvae with greater skeletal deformities and larger otoliths may face major ecophysiological challenges, which might potentiate substantial declines in adult fish populations, putting in jeopardy the species fitness under a changing ocean.