Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Journal of Molecular Catalysis B: Enzymatic, (101), p. 16-22

DOI: 10.1016/j.molcatb.2013.12.012

Links

Tools

Export citation

Search in Google Scholar

Kinetic model for the esterification of ethyl caproate for reaction optimization

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The present work aims to achieve additional insight on a mechanism describing the fundamental steps involved in the esterification reactions catalyzed by cutinase. The synthesis of ethyl caproate has been used as a model system to obtain a suitable kinetic model to estimate the activation energies involved in the various steps of the reaction pathway.Kinetic measurements have been made for the enzymatic esterification of caproic acid with ethyl alcohol catalyzed by recombinant Fusarium solani pisi cutinase expressed in Saccharomyces cerevisiae SU50. Different temperature conditions, from 25 to 50 °C, were tested for two different alcohol/acid molar ratios (R = 1 and R = 2). The third ordered Ping Pong Bi Bi mechanism with alcohol inhibition was shown to be able to describe the experimental results. The model shows that the productivity decreases as the reaction temperature increases.