Published in

Wiley, Journal of Polymer Science Part B: Polymer Physics, 17(48), p. 1927-1938, 2010

DOI: 10.1002/polb.22069

Links

Tools

Export citation

Search in Google Scholar

Isothermal Crystallization Kinetics of Polypropylene Latex–Based Nanocomposites with Organo-Modified Clay

Journal article published in 2010 by Luljeta Raka, Andrea Sorrentino ORCID, Gordana Bogoeva-Gaceva
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The effect of organo-modified clay (Cloisite 93A) on the crystal structure and isothermal crystallization behavior of isotactic polypropylene (iPP) in iPP/clay nanocomposites prepared by latex technology was investigated by wide angle X-ray diffraction, differential scanning calorimetry and polarized optical microscopy. The X-ray diffraction results indicated that the higher clay loading promotes the formation of the β-phase crystallites, as evidenced by the appearance of a new peak corresponding to the (300) reflection of β-iPP. Analysis of the isothermal crystallization showed that the PP nanocomposite (1% C93A) exhibited higher crystallization rates than the neat PP. The unfilled iPP matrix and nanocomposites clearly shows double melting behavior; the shape of the melting transition progressively changes toward single melting with increasing crystallization temperature. The fold surface free energy (σe) of polymer chains in the nanocomposites was lower than that in the PP latex (PPL). It should be reasonable to treat C93A as a good nucleating agent for the crystallization of PPL, which plays a determinant effect on the reduction in σe during the isothermal crystallization of the nanocomposites. The activation energy, ΔEa, decreased with the incorporation of clay nanoparticles into the matrix, which in turn indicates that the nucleation process is facilitated by the presence of clay. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1927–1938, 2010