Published in

Wiley, River Research and Applications, 1(20), p. 25-41, 2003

DOI: 10.1002/rra.719

Links

Tools

Export citation

Search in Google Scholar

Reconstruction of the characteristics of a natural alluvial river–floodplain system and hydromorphological changes following human modifications: the Danube River (1812–1991)

Journal article published in 2003 by S. Hohensinner ORCID, H. Habersack, M. Jungwirth, G. Zauner
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Based on detailed historical surveys from 1812, the natural riverine landscape of a 10.25-km-long reach of the Danube River in the Austrian Machland region prior to channelization is analysed. Anthropogenically induced changes of fluvial dynamics, hydrological connectivity and aquatic habitat composition are discussed, comparing the situations following channelization (1925) and flow regulation (1991). In 1812 the alluvial river–floodplain system of the Danube River comprised a highly complex channel network, numerous gravel bars and extensive islands, with the main channel and side arms (eupotamon) representing about 97% of the entire water surface at low flow. The floodplain was characterized by relatively flat terrain and numerous natural trenches (former active channels) connected to the main channel. These hydromorphological conditions led to marked expansion/contraction of the water surface area at water level fluctuations below bankfull (‘flow pulse’). The high degree of hydrological connectivity enabled intensive exchange processes and favoured migrations of aquatic organisms between the river and floodplain habitats over a period of approximately 90 days per year. Overall in 1812, 57% of the active zone (active channels and floodplain) was inundated at bankfull water level.Channelization and construction of hydropower plants resulted in a truncated fluvial system. Consequently, eupotamal water bodies decreased by 65%, and gravel/sand bars and vegetated islands decreased by 94% and 97%, respectively, whereas the area of the various backwaters doubled. In 1991 the former ‘flow pulse’ was halved due to artificial levees and embankments, greatly diminishing hydrological connectivity and decoupling large areas of the floodplain from the main channel. Active overflow, formerly playing an important role, is now replaced by backwater flooding and seepage inflow in isolated water bodies. Copyright © 2003 John Wiley & Sons, Ltd.